Drainage and pipes - plumber needed?

nd a side outlet with female threads. It is used to either combine or split a fluid flow. It is a type of pipe fitting which is T-shaped having two outlets, at 90° to the connection to the main line. It is a short piece of pipe wi

Drainage and pipes - plumber needed? plumber Wandsworth

Tee - more than alphabet letter

A tee is the most common pipe fitting. It is available with all female thread sockets, all solvent weld sockets, or with opposed solvent weld sockets and a side outlet with female threads. It is used to either combine or split a fluid flow. It is a type of pipe fitting which is T-shaped having two outlets, at 90° to the connection to the main line. It is a short piece of pipe with a lateral outlet. A tee is used for connecting pipes of different diameters or for changing the direction of pipe runs. They are made of various materials and available in various sizes and finishes. They are extensively used in pipeline networks to transport two-phase fluid mixtures. They are categorized as:

Equal
Unequal

When the size of the branch is same as header pipes, equal tee is used and when the branch size is less than that of header size, reduced tee will be used. Most common are tees with the same inlet and outlet sizes. Some of the industrial tees are Straight Tee, Reducing Tee, Double Branch Tee, Double Branch Reducing Tee, Conical Tee, Double Branch Conical Tee, Bullhead Tee, Conical Reducing Tee, Double Branch Conical Reducing Tee, Tangential Tee, and Double Branch Tangential Tee.

The above tees are categorized on the basis of their shapes and structure. They can also be classified on the basis of the application they are required to perform.

The three outlet sizes should be named in order (e.g. left, middle, right; measuring 15-22-15). The three sizes of a tee are end x end x center, so a tee that is 1" on both ends and 3/4" in the center it would be 1" x 1" x 3/4".

Źródło: https://en.wikipedia.org/wiki/Piping_and_plumbing_fitting


Differences between pipes and tubes

The difference between pipes and tubes is simply in the way it is sized. PVC pipe for plumbing applications and galvanized steel pipe for instance, are measured in IPS (iron pipe size). Copper tube, CPVC, PeX and other tubing is measured nominally, which is basically an average diameter. These sizing schemes allow for universal adaptation of transitional fittings. For instance, 1/2" PeX tubing is the same size as 1/2" copper tubing. 1/2" PVC on the other hand is not the same size as 1/2" tubing, and therefore requires either a threaded male or female adapter to connect them. When used in agricultural irrigation, the singular form "pipe" is often used as a plural.

Pipe is available in rigid "joints", which come in various lengths depending on the material. Tubing, in particular copper, comes in rigid hard tempered "joints" or soft tempered (annealed) rolls. PeX and CPVC tubing also comes in rigid "joints" or flexible rolls. The temper of the copper, that is whether it is a rigid "joint" or flexible roll, does not affect the sizing.

The thicknesses of the water pipe and tube walls can vary. Pipe wall thickness is denoted by various schedules or for large bore polyethylene pipe in the UK by the Standard Dimension Ratio (SDR), defined as the ratio of the pipe diameter to its wall thickness. Pipe wall thickness increases with schedule, and is available in schedules 20, 40, 80, and higher in special cases. The schedule is largely determined by the operating pressure of the system, with higher pressures commanding greater thickness. Copper tubing is available in four wall thicknesses: type DWV (thinnest wall; only allowed as drain pipe per UPC), type 'M' (thin; typically only allowed as drain pipe by IPC code), type 'L' (thicker, standard duty for water lines and water service), and type 'K' (thickest, typically used underground between the main and the meter). Because piping and tubing are commodities, having a greater wall thickness implies higher initial cost. Thicker walled pipe generally implies greater durability and higher pressure tolerances.

Wall thickness does not affect pipe or tubing size.1/2" L copper has the same outer diameter as 1/2" K or M copper. The same applies to pipe schedules. As a result, a slight increase in pressure losses is realized due to a decrease in flowpath as wall thickness is increased. In other words, 1 foot of 1/2" L copper has slightly less volume than 1 foot of 1/2 M copper.

Źródło: https://en.wikipedia.org/wiki/Plumbing


When it is necessary to support the service hydraulic?

Hydraulics are often enough and require emergency repairs carried out by good professionals. Some failures are very serious, others less problematic, but each time should be conducted very fairly and professionally. These smaller faults often we will be able to fix yourself, but if you've become something more serious, you should call a good service hydraulics. Not every failure will end up pretty large costs or cause difficulties, but if not repaired properly, things can get complicated. So it is better to rely here on the knowledge of experienced plumbers, than to rely on luck, because they often can we make this more difficult.



© 2019 http://www.londonpub.wloclawek.pl/